• GPU 算力方案
  • Cluster Engine
  • Application Platform
  • NVIDIA H200
  • NVIDIA GB200 NVL72
  • 解決方案
    
    GPU 算力租賃Cluster EngineInference EngineAI 應用開發平台
  • GPUs
    
    H200NVIDIA GB200 NVL72NVIDIA HGX™ B200
  • 定價
  • 關於
    
    關於我們部落格Discourse合作夥伴聯絡我們
  • 關於我們
  • 部落格
  • Discourse
  • 合作夥伴
  • 聯絡我們
  • 開始使用
繁體中文
繁體中文

English
日本語
한국어
繁體中文
一鍵啟用聯繫專家

LoRA LLM

Get startedfeatures

Related terms

Deep Learning
Large Language Model (LLM)
BACK TO GLOSSARY

LoRA (Low-Rank Adaptation) is a parameter-efficient fine-tuning method designed specifically for Large Language Models (LLMs). Instead of updating all the model’s weights during training, LoRA freezes the original pre-trained weights and adds a small number of trainable parameters through low-rank matrices inserted into targeted layers (commonly attention and feedforward layers). This approach drastically reduces the number of trainable parameters, enabling:

  • Faster training times
  • Reduced hardware requirements
  • More adaptable multi-task models

In technical terms, LoRA decomposes the weight update matrix into the product of two smaller matrices — one with a lower rank — and adds them to the existing weights only during the forward pass. This maintains the expressiveness of the full model while optimizing for efficiency.

LoRA has become a standard method for customizing massive models like GPT, BERT, or LLaMA on domain-specific data without the need to retrain or store the full model for each task.

訂閱 GMI Cloud 電子報

Empowering humanity's AI ambitions with instant GPU cloud access.

[email protected]

278 Castro St, Mountain View, CA 94041

  • GPU 算力租賃
  • Cluster Engine
  • AI 應用開發平台
  • 定價
  • AI 技術字彙索引
  • 關於我們
  • Blog
  • Partners
  • 人才招募
  • 聯絡我們

© 2024 版權所有。

隱私政策

使用條款