• GPU 인스턴스
  • 클러스터 엔진
  • Application Platform
  • NVIDIA H200
  • NVIDIA GB200 NVL72
  • 제작품
    
    GPU 인스턴스클러스터 엔진Inference Engine애플리케이션 플랫폼
  • GPUs
    
    H200NVIDIA GB200 NVL72NVIDIA HGX™ B200
  • 요금제
  • 회사
    
    회사 소개블로그Discourse파트너문의하기
  • 회사 소개
  • 블로그
  • Discourse
  • 파트너
  • 문의하기
  • 시작해 보세요
한국어
한국어

English
日本語
한국어
繁體中文
시작해 보세요Contact Sales

LoRA LLM

Get startedfeatures

Related terms

딥 러닝
대규모 언어 모델 (LLM)
BACK TO GLOSSARY

LoRA (Low-Rank Adaptation) is a parameter-efficient fine-tuning method designed specifically for Large Language Models (LLMs). Instead of updating all the model’s weights during training, LoRA freezes the original pre-trained weights and adds a small number of trainable parameters through low-rank matrices inserted into targeted layers (commonly attention and feedforward layers). This approach drastically reduces the number of trainable parameters, enabling:

  • Faster training times
  • Reduced hardware requirements
  • More adaptable multi-task models

In technical terms, LoRA decomposes the weight update matrix into the product of two smaller matrices — one with a lower rank — and adds them to the existing weights only during the forward pass. This maintains the expressiveness of the full model while optimizing for efficiency.

LoRA has become a standard method for customizing massive models like GPT, BERT, or LLaMA on domain-specific data without the need to retrain or store the full model for each task.

즉각적인 GPU 클라우드 액세스를 통해 인류의 AI 야망을 강화합니다.

2860 잔커 로드스위트 100 캘리포니아 산호세 95134

  • GPU 인스턴스
  • 클러스터 엔진
  • 애플리케이션 플랫폼
  • 가격 책정
  • 회사 소개
  • Glossary
  • Blog
  • Careers
  • About Us
  • Partners
  • Contact Us

Sign up for our newsletter

Subscribe to our newsletter

Email
Submitted!
Oops! Something went wrong while submitting the form.
ISO27001:2022
SOC 2 Type 1

© 2024 판권 소유.

개인정보 보호 정책

이용 약관