• GPU 인스턴스
  • 클러스터 엔진
  • Application Platform
  • NVIDIA H200
  • NVIDIA GB200 NVL72
  • 제작품
    
    GPU 인스턴스클러스터 엔진Inference Engine애플리케이션 플랫폼
  • GPUs
    
    H200NVIDIA GB200 NVL72NVIDIA HGX™ B200
  • 요금제
  • 회사
    
    회사 소개블로그Discourse파트너문의하기
  • 회사 소개
  • 블로그
  • Discourse
  • 파트너
  • 문의하기
  • 시작해 보세요
한국어
한국어

English
日本語
한국어
繁體中文
시작해 보세요Contact Sales

LoRA LLM

Get startedfeatures

Related terms

딥 러닝
대규모 언어 모델 (LLM)
BACK TO GLOSSARY

LoRA (Low-Rank Adaptation) is a parameter-efficient fine-tuning method designed specifically for Large Language Models (LLMs). Instead of updating all the model’s weights during training, LoRA freezes the original pre-trained weights and adds a small number of trainable parameters through low-rank matrices inserted into targeted layers (commonly attention and feedforward layers). This approach drastically reduces the number of trainable parameters, enabling:

  • Faster training times
  • Reduced hardware requirements
  • More adaptable multi-task models

In technical terms, LoRA decomposes the weight update matrix into the product of two smaller matrices — one with a lower rank — and adds them to the existing weights only during the forward pass. This maintains the expressiveness of the full model while optimizing for efficiency.

LoRA has become a standard method for customizing massive models like GPT, BERT, or LLaMA on domain-specific data without the need to retrain or store the full model for each task.

Sign up for our newsletter

즉각적인 GPU 클라우드 액세스를 통해 인류의 AI 야망을 강화합니다.

[email protected]

2860 잔커 로드스위트 100 캘리포니아 산호세 95134

  • GPU 인스턴스
  • 클러스터 엔진
  • 애플리케이션 플랫폼
  • 가격 책정
  • Glossary
  • 회사 소개
  • Blog
  • Partners
  • 블로그
  • 문의하기

© 2024 판권 소유.

개인정보 보호 정책

이용 약관