• GPU 인스턴스
  • 클러스터 엔진
  • Application Platform
  • NVIDIA H200
  • NVIDIA GB200 NVL72
  • 제작품
    
    GPU 인스턴스클러스터 엔진Inference Engine애플리케이션 플랫폼
  • GPUs
    
    H200NVIDIA GB200 NVL72NVIDIA HGX™ B200
  • 요금제
  • 회사
    
    회사 소개블로그Discourse파트너문의하기
  • 회사 소개
  • 블로그
  • Discourse
  • 파트너
  • 문의하기
  • 시작해 보세요
한국어
한국어

English
日本語
한국어
繁體中文
시작해 보세요Contact Sales

Latency

Get startedfeatures

Related terms

추론
BACK TO GLOSSARY

Latency in AI is the time it takes for an AI system to respond after receiving an input. Most often, this refers to inference latency—how quickly a model processes a request and returns a result during real-world use.

Latency is a critical performance factor, especially for AI applications that demand real-time speed and responsiveness.

Key aspects of AI latency include:

  • Inference Delay: The time between a user prompt and the model’s response.
  • User Experience: Lower latency means faster, smoother interactions—crucial for chatbots, video tools, and autonomous systems.
  • Model Complexity: Larger, more powerful models often have higher latency unless specifically optimized.
  • Infrastructure Impact: High-performance GPUs (like NVIDIA H100s) and tuned inference engines can dramatically cut latency.
    Business Implications: In real-time products, even small delays can impact engagement, conversion, or customer satisfaction.

Reducing latency is essential to scaling AI products that feel immediate and intuitive. Teams that prioritize inference speed often unlock better performance and cost efficiency. Learn more about how we’re driving low-latency AI infrastructure here.

Sign up for our newsletter

즉각적인 GPU 클라우드 액세스를 통해 인류의 AI 야망을 강화합니다.

[email protected]

2860 잔커 로드스위트 100 캘리포니아 산호세 95134

  • GPU 인스턴스
  • 클러스터 엔진
  • 애플리케이션 플랫폼
  • 가격 책정
  • Glossary
  • 회사 소개
  • Blog
  • Partners
  • 블로그
  • 문의하기

© 2024 판권 소유.

개인정보 보호 정책

이용 약관