• GPU インスタンス
  • クラスターエンジン
  • Application Platform
  • NVIDIA H200
  • NVIDIA GB200 NVL72
  • ソリューション
    
    GPU 計算力レンタルCluster EngineInference EngineAI 開発プラットフォーム
  • GPUs
    
    H200NVIDIA GB200 NVL72NVIDIA HGX™ B200
  • 料金プラン
  • 会社情報
    
    会社情報リソースDiscourseパートナーお問い合わせ
  • 私たちについて
  • ブログ
  • Discourse
  • パートナー
  • お問い合わせ
  • さあ、始めましょう
日本語
日本語

English
日本語
한국어
繁體中文
今すぐ利用Contact Sales

Latency

Get startedfeatures

Related terms

No items found.
BACK TO GLOSSARY

Latency in AI is the time it takes for an AI system to respond after receiving an input. Most often, this refers to inference latency—how quickly a model processes a request and returns a result during real-world use.

Latency is a critical performance factor, especially for AI applications that demand real-time speed and responsiveness.

Key aspects of AI latency include:

  • Inference Delay: The time between a user prompt and the model’s response.
  • User Experience: Lower latency means faster, smoother interactions—crucial for chatbots, video tools, and autonomous systems.
  • Model Complexity: Larger, more powerful models often have higher latency unless specifically optimized.
  • Infrastructure Impact: High-performance GPUs (like NVIDIA H100s) and tuned inference engines can dramatically cut latency.
    Business Implications: In real-time products, even small delays can impact engagement, conversion, or customer satisfaction.

Reducing latency is essential to scaling AI products that feel immediate and intuitive. Teams that prioritize inference speed often unlock better performance and cost efficiency. Learn more about how we’re driving low-latency AI infrastructure here.

最新情報をメールでお届けします

GPU クラウドの即時アクセスで、
人類の AI への挑戦を加速する。

[email protected]

2860 Zanker Rd. Suite 100 San Jose, CA 95134

  • GPU 計算力レンタル
  • Cluster Engine
  • Inference Engine
  • 料金プラン
  • 用語集
  • 会社情報
  • Blog
  • パートナー
  • 採用情報
  • お問い合わせ

© 2024 無断転載を禁じます。

個人情報保護

利用規約