• GPU インスタンス
  • クラスターエンジン
  • Application Platform
  • NVIDIA H200
  • NVIDIA GB200 NVL72
  • ソリューション
    
    GPU 計算力レンタルCluster EngineInference EngineAI 開発プラットフォーム
  • GPUs
    
    H200NVIDIA GB200 NVL72NVIDIA HGX™ B200
  • 料金プラン
  • 会社情報
    
    会社情報リソースDiscourseパートナーお問い合わせ
  • 私たちについて
  • ブログ
  • Discourse
  • パートナー
  • お問い合わせ
  • さあ、始めましょう
日本語
日本語

English
日本語
한국어
繁體中文
今すぐ利用Contact Sales

Pruning

Get startedfeatures

Related terms

No items found.
BACK TO GLOSSARY

Pruning in artificial intelligence particularly in deep learning, refers to the systematic removal of parts of a neural network (such as weights, neurons, or even layers) that contribute little to the model’s performance. The main goal is to make the model smaller, faster, and more efficient while maintaining similar accuracy or predictive capabilities.

Why Pruning Is Used:

  • Reduce model size: Pruning decreases the number of parameters, making the model easier to store and deploy, especially on edge devices like smartphones or IoT sensors.
  • Speed up inference: Fewer parameters mean fewer computations during prediction, which leads to faster response times.
  • Lower energy consumption: Pruned models use less computational power, which is useful for both sustainability and hardware constraints.
  • Combat overfitting: By eliminating redundant or weak connections, pruning can help the model generalize better on unseen data.

How It Works:

  1. Train a full model to achieve baseline performance.
  2. Evaluate the importance of individual weights, neurons, or filters using metrics like magnitude (L1/L2 norm) or gradient-based scores.
  3. Remove (prune) the least important ones based on a threshold or target sparsity.
  4. Fine-tune or retrain the model to recover any lost accuracy.

Types of Pruning:

  • Weight pruning: Removes specific weights (connections) in the network.
  • Neuron pruning: Eliminates entire neurons or filters (in CNNs).
  • Structured pruning: Removes entire channels, layers, or blocks for better hardware compatibility.
  • Dynamic pruning: Prunes during training instead of after.

Pruning is commonly used in combination with other techniques like quantization or knowledge distillation to further optimize models for production use.

‍

最新情報をメールでお届けします

GPU クラウドの即時アクセスで、
人類の AI への挑戦を加速する。

[email protected]

2860 Zanker Rd. Suite 100 San Jose, CA 95134

  • GPU 計算力レンタル
  • Cluster Engine
  • Inference Engine
  • 料金プラン
  • 用語集
  • 会社情報
  • Blog
  • パートナー
  • 採用情報
  • お問い合わせ

© 2024 無断転載を禁じます。

個人情報保護

利用規約