Aliquet morbi justo auctor cursus auctor aliquam. Neque elit blandit et quis tortor vel ut lectus morbi. Amet mus nunc rhoncus sit sagittis pellentesque eleifend lobortis commodo vestibulum hendrerit proin varius lorem ultrices quam velit sed consequat duis. Lectus condimentum maecenas adipiscing massa neque erat porttitor in adipiscing aliquam auctor aliquam eu phasellus egestas lectus hendrerit sit malesuada tincidunt quisque volutpat aliquet vitae lorem odio feugiat lectus sem purus.
Viverra mi ut nulla eu mattis in purus. Habitant donec mauris id consectetur. Tempus consequat ornare dui tortor feugiat cursus. Pellentesque massa molestie phasellus enim lobortis pellentesque sit ullamcorper purus. Elementum ante nunc quam pulvinar. Volutpat nibh dolor amet vitae feugiat varius augue justo elit. Vitae amet curabitur in sagittis arcu montes tortor. In enim pulvinar pharetra sagittis fermentum. Ultricies non eu faucibus praesent tristique dolor tellus bibendum. Cursus bibendum nunc enim.
Mattis quisque amet pharetra nisl congue nulla orci. Nibh commodo maecenas adipiscing adipiscing. Blandit ut odio urna arcu quam eleifend donec neque. Augue nisl arcu malesuada interdum risus lectus sed. Pulvinar aliquam morbi arcu commodo. Accumsan elementum elit vitae pellentesque sit. Nibh elementum morbi feugiat amet aliquet. Ultrices duis lobortis mauris nibh pellentesque mattis est maecenas. Tellus pellentesque vivamus massa purus arcu sagittis. Viverra consectetur praesent luctus faucibus phasellus integer fermentum mattis donec.
Commodo velit viverra neque aliquet tincidunt feugiat. Amet proin cras pharetra mauris leo. In vitae mattis sit fermentum. Maecenas nullam egestas lorem tincidunt eleifend est felis tincidunt. Etiam dictum consectetur blandit tortor vitae. Eget integer tortor in mattis velit ante purus ante.
“Lacus donec arcu amet diam vestibulum nunc nulla malesuada velit curabitur mauris tempus nunc curabitur dignig pharetra metus consequat.”
Commodo velit viverra neque aliquet tincidunt feugiat. Amet proin cras pharetra mauris leo. In vitae mattis sit fermentum. Maecenas nullam egestas lorem tincidunt eleifend est felis tincidunt. Etiam dictum consectetur blandit tortor vitae. Eget integer tortor in mattis velit ante purus ante.
Kimi K2 is a 1‑trillion‑parameter Mixture‑of‑Experts model from Moonshot AI. The Instruct model is now fully integrated into the GMI Cloud inference engine. It comes with 32 billion active parameters, 1 trillion total parameters and a 128 k‑token context window. Trained with the MuonClip Optimizer, Kimi K2 achieves exceptional performance across frontier knowledge, reasoning, and coding tasks while being meticulously optimized for agentic capabilities. Check out their GitHub here.
Kimi K2 was developed by Moonshot AI, a frontier AI research lab based in China. Moonshot is focused on building competitive open models with practical applications, particularly in long-context memory and multi-modal learning. Kimi K2 is their most advanced offering to date and reflects their broader mission of making cutting-edge AI research openly accessible to the world.
Here's the benchmarks for how it compares with other models in the wild:
You can deploy Kimi K2 immediately through our inference engine by following the instructions here.
GMI Cloud provides the infrastructure, tooling, and support needed to deploy Kimi K2 at scale. Our inference engine is optimized for large-token throughput and ease of use, enabling rapid integration into production environments.
Teams using GMI Cloud can:
At GMI Cloud, we’re excited to offer access to Kimi K2 because it unlocks a new level of long-context reasoning for teams building research assistants, legal AI, financial analysis tools, and other high-memory applications. We see Kimi K2 as a core model for anyone looking to build intelligent systems that need to reason over vast, interrelated information.
Technical Overview
GitHub Repository
Kimi K2 is now available on GMI Cloud for research and production use. Whether you're building AI agents, enterprise workflows, or RAG applications, GMI Cloud makes it easy to deploy and scale long-context models like Kimi K2.
Explore Kimi K2 on GMI Cloud Playground
About GMI Cloud
GMI Cloud is a high-performance AI cloud platform purpose-built for running modern inference and training workloads. With GMI Cloud Inference Engine, users can access, evaluate, and deploy top open-source models with production-ready performance.
Explore more hosted models → GMI Model Library